

Инструкция по подключению

www.7gis.ru

Оглавление

Требуемые инструменты, приборы, материалы	3
Общая информация	4
Подключение тахографа к терминалу	6
Настройка терминала	8
Настройка мониторингового ПО	11
ПРИЛОЖЕНИЕ № 1	12
Отображение текущего состояния тахографа	12
Логика работы сервера	13

Требуемые инструменты, приборы, материалы

Для подключения тахографа «Continental VDO DTCO 3283» («Continental VDO DTCO 1381») (далее - тахограф) к терминалу Galileosky (далее - терминал) необходимо иметь:

- 1. Электромонтажный инструмент.
- 2. Комплект монтажных проводов.
- Компьютер на базе операционной системы «Windows» с установленной программой конфигурации терминалов – «Конфигуратор» версии 4.0 и выше. Рекомендуется установить последнюю версию программы с сайта https://7gis.ru/podderzhka/programmyi.html

Подключение и настройка (версия 7 от 31.05.2018)

Общая информация

Тахограф «Continental VDO DTCO 3283» (с блоком СКЗИ для внутренних перевозок) или «Continental VDO DTCO 1381» (для международных перевозок) – это контрольноизмерительное устройство, предназначенное для регистрации пробега автомобиля, скоростного режима и периодов работы и отдыха водителей. Тахограф (рис. 1) необходим для контроля за соблюдением правил дорожного движения и установленного режима труда водителя, что направлено на предупреждение дорожно-транспортных происшествий.

Терминал предоставляет следующие функции:

- 1. Отображение текущего состояния тахографа:
- 1.1. скорость автомобиля;
- 1.2. информацию по первому и второму водителю:
- 1.2.1. текущий вид деятельности;
- 1.2.2. наличие карты водителя в слоте;
- 2. Выгрузка ddd-файла с карты водителя.

Рис. 1

Taxorpa¢ «Continental VDO DTCO»

ВНИМАНИЕ! Данный функционал реализован в терминалах с помощью технологии Easy Logic https://7gis.ru/products/easylogic.html. Необходимо использовать терминалы с поддержкой Easy Logic. Определить возможность поддержки терминалом Easy Logic можно двумя способами:

- в спецификации терминала должна присутствовать аббревиатура (AI) или на этикетке снизу корпуса терминала должна присутствовать аббревиатура (2) около IMEI (Рис. 2).
- отправить на терминал команду Hardversion, если в ответе после запятой будут стоять цифры, отличные от нуля, то возможна работа с пользовательскими алгоритмами (например, ответ: HARDVERSION=21,8243)

Минимальная версия прошивки терминала должна быть 230.5 для терминалов версий 2.X и 5.X. Для терминалов версий 7.0 и Base Block минимальная версия прошивки – 1.

Определение поддержки терминалом Easy Logic по наклейке

Подключение тахографа к терминалу

Подключение тахографа к терминалу осуществляется в соответствии со схемой, приведенной на Рисунке 3.

ВНИМАНИЕ! Тахограф можно подключить через интерфейс RS232, в этом случае можно отдельно выгружать ddd-файл с карты водителя, или через интерфейс CAN для получения текущих показаний тахографа. При одновременном использовании двух указанных вариантов информацию можно получать в полном объеме.

•

Тахограф

. .

€↑

RXD0

R

ТΧ

САN-шина ТС

CAN_H

CAN L TXE

CAN_High

CAN_Low

Рис. 3

Схемы подключения тахографа

ВНИМАНИЕ! Земли (GND) терминала и тахографа должны быть соединены, контакты RS232 должны соединяться строго по схеме RX индикатора - TXO (TX1) терминала и TX индикатора - RXO (RX1) терминала. Питание на тахограф подаётся отдельно.

Для подключения терминала по RS232 следует использовать 6-контактный разъём для программирования, калибровки и загрузки данных, расположение и назначение контактов которого можно посмотреть на рис. 4.

Nº	Назначение
1	Минус бортовой сети
2	K-Line
3	R× RS232
4	Калибровочный входной/выходной сигнал
5	Плюс бортовой сети
6	Tx RS232

Расположение и распиновка 6контактного разъема

Подключение и настройка (версия 7 от 31.05.2018)

Настройка терминала

Настройка терминала для подключения тахографа выполняется через Конфигуратор:

- 1. подключите тахограф к терминалу;
- 2. подключите терминал к ПК;
- 3. запустите на ПК программу Конфигуратор;
- перейдите на вкладку «Настройки»/«Протокол» Конфигуратора, настройте основной пакет на передачу данных на сервер, для чего отметьте любую пару из 16 и 32-разрядных тегов «CAN32BITRх», «CAN16BITRх» протокола, за исключением относящихся к динамическому архиву, например параметры «CAN32BITR2», «CAN16BITR2» (Рис. 5);

Безопасность	Передача данных	Протокол	окол Энергосбережение Трек Входы/вы						
Информация о внутреннем архиве Внутренняя флеш-память, динамический архив, размер=34362 точе Размер точки основного пакета=76 байт									
Первый пакет Основной пакет									
CAN16BITR2 CAN-LOG. Har	рузка на ось 3			I					
CAN16BITR3 CAN-LOG. Har	рузка на ось 4								
CAN16BITR4 CAN-LOG. Har	рузка на ось 5				I				
CAN32BITR0 CAN-LOG. Пол	ное время работы да		I						
CAN32BITR1 CAN-LOG. Ton	ливо, л		I						
CAN32BITR2 CAN-LOG. Про	оизвольный префикс								

Рис. 5

Настройка основного пакета

5. перейдите на вкладку «Цифровые входы» Конфигуратора, для параметра «RS232[0] тип периферии» установите значение «нет» (Рис. 6);

пасность	Передача данных	Протокол	Энергосбережение	Трек	Входы/выходы	Цифровые входы	◀
R5232 -							_
RS232[0] тип периферии	нет			•		

6. перейдите на вкладку «CAN» Конфигуратора; установите значение скорости шины в «250000»; выберите тип фильтра «пользовательский фильтр J1939, 29-битные идентификаторы»; введите значение таймаута равное 2000 мс (Рис. 7);

Рис. 6

Установка режима работы входа RS232[0]

Подключение и настройка

(версия 7 от 31.05.2018)

Безопасность	Передача данны	ых Проток	ол Энерг	осбережение	Трек	Входы/выходы	Цифровые
Скорость шины	Скорость шины						
Тип фильтра			пользовате	льский фильтр	o J1939, 29	-битные идентифик	каторы 🔻
Таймаут	Таймаут						
Не обнулять данны	е после отключ	ения от шины					
Идентификатор сообщения	Тэг в протоколе	Смещение	Big-endian	Значение			
~							

- 7. нажмите кнопку «Применить»;
- активируйте зажигание автомобиля, если САN-шина не работает без него; нажмите на кнопку «Прослушать CAN» и ожидайте завершения сканирования; если в результате сканирования не будет найден идентификатор ID=0CFE6CEE, то проверьте подключение и активность CAN шины, т.к. текущие данные тахографа не будут считываться;
- 9. в таблице фильтров на вкладке «САМ» добавьте две записи:

- идентификатор сообщения – 0CFE6CEE, тэг в протоколе – CAN32BITR2 (для примера), смещение – первые 4 байта, big-endian – не активно;

- идентификатор сообщения – OCFE6CEE, тэг в протоколе – CAN16BITR2 (для примера), смещение – 7-ой и 8-ой из 8 байтов, big-endian – не активно (Рис. 8);

Идентификат сообщения	rop 1	Тэг в протокол	ıe			C	мец	цени	ie			Big-endian	Значение
0CFE6CEE	•	CAN32BITR2	•	00	00	00	00	00	00	00	00		0
0CFE6CEE	•	CAN16BITR2	•	00	00	00	00	00	00 [00	00		0
	•												

Рис. 8

Настройка фильтра CAN-шины

10. нажмите кнопку «Применить»;

 перейдите на вкладку «Команды» Конфигуратора и выполните команду «script galileosky/tahograf_continental" (Рис. 9);

	Команды
Устройство	script galleosky/tahograf_continental
📶 Диагностика	
🏠 Настройки	
🔁 Фильтры	
🧮 Команды	
🔯 Данные	Результаты выполнения конанд
🧕 Маршруты	Команда: script galleosky/tahograf_continental Ответ: Script download is scheduled
Новости	

ВНИМАНИЕ! Алгоритм скачивается с сервера, поэтому в терминале обязательно должна быть установлена рабочая SIM-карта с поддержкой GPRS.

9

Рис. 7

Установка режима сканирования САNшины

Рис. 9

Установка алгоритма

Подключение и настройка

(версия 7 от 31.05.2018)

 дождитесь подтверждения выполнения команды терминалом, для этого через несколько минут после отправки команды перейдите на вкладку «Устройство» Конфигуратора и убедитесь, что в строке Easy Logic содержится информация об установленном алгоритме (Рис. 10);

📑 Устройство	Выберите устройство Идентификационные данные	
	Устройство	50
🚈 Диагностика	Прошивка	231.20
	Тип	Galileosky GPS/ГЛОНАСС v5.0
🔯 Настройки	EasyLogic	galileosky/tahograf_continental
	Фильтры	не загружено
	Навигационные данные ГЛОНАСС -	

Рис. 10

Проверка загрузки алгоритма

 для проверки работоспособности алгоритма перейдите на вкладку «Диагностика» Конфигуратора, отметьте параметр «Алгоритмы» и проверьте наличие диагностических сообщений (Рис. 11):

	EVM3-1. Delay 700	^	*
Устроиство	EVM3-1. Delay 700		Время
	EVM3-2. Script. Result=0 EVM3-1. Delay 700		Навигационные данные
🕋 Диагностика 🤇	EVM3-2. Script. Result=0 EVM3-1 Delay 700		Навигационные данные детально
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EVM3-2. Script. Result=0		Передача данных
🎡 Настройки	EVM3-1. Delay 700 EVM3-2. Script. Result=0		П Передача данных детально
-	EVM3-1. Delay 700 EVM3-2. Script. Result=0		
🛂 Фильтры	EVM3-1. Delay 700		
	EVM3-1. Delay 700		
🔲 Команды	EVM3-2. Script. Result=0 EVM3-1. Delay 700		
	EVM3-2. Script. Result=0 EVM3-1 Delay 700		
	EVM3-2. Script. Result=0		
🔊 данные	EVM3-1. Delay 700 EVM3-2. Script. Result=0		
<b>A</b>	EVM3-1. Delay 700 EVM3-2. Script. Result=0		
💙 Маршруты	EVM3-1. Delay 700		GPS/ГЛОНАСС-модуль
	EVM3-2. Script. Result=0 EVM3-1. Delay 700		GSM/GPRS-модуль
Новости	EVM3-2. Script. Result=0		1-Wire
11 12 2017	EVM3-2. Script. Result=0		Акселерометр
Новые возможности	EVM3-1. Delay 700 EVM3-2. Script. Result=0		🗹 Алгоритмы
интеграций 2017 В этой статье собраны	EVM3-1. Delay 700	J	Диагностика алгоритмов и скриптов
новинки интеграций		-	
реализованных командой	Поиск 🔄 🧶 🐴 🛛 Остановить диагностик	ку	Очистить окно 💾 Сохранить в файл

Рис. 11

Проверка работоспособности

## Настройка мониторингового ПО

После настройки терминала выполняется настройка мониторингового программного обеспечения.

ВНИМАНИЕ! В системе мониторинга Wialon Hosting уже выполнена доработка программного обеспечения для получения ddd-файлов от тахографа через терминал (рис. 12). Для анализа данных ddd-файлов необходимо использовать приложения TachoManager: http://apps.wialon.com/docs/ru/tachomanager.html и TachoView: http://apps.wialon.com/docs/ru/tachoview.html.

pod_the_name=8595100580168_20150024_113157.ddt(repske_dodd).gprg_anser=7.hkV00(113).sdt222 hodgs05_5_sm_tAblas_2_acc_thogger(0_tho_type=1_tho_tablas_2_tho_mode=0_tho_speed(0_tho_type=10154, tho_t_d1_actv)=2.tho_d1_actv)=2.tho_t_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_actv]=0.tho_d1_

Если система мониторинга не поддерживает прием информации от тахографа, поступающей на сервер через терминал, необходимо самостоятельно разработать и установить на сервер мониторинга программное обеспечение, обрабатывающее данные согласно протоколу обмена между терминалом и сервером (Приложение 1)

Подключение тахографа «Continental VDO DTCO 3283» («Continental VDO DTCO 1381») к терминалу Galileosky завершено, терминал готов к работе.

«НПО «ГалилеоСкай» занимается производством аппаратуры спутниковой навигации (далее терминал) мониторинга автотранспорта в режиме реального времени с использованием сигналов GPS и ГЛОНАСС. Терминалы определяют местоположение мобильного объекта путем записи времени и маршрута в виде точек с географическими координатами и передают данные на сервер, для дальнейшей их обработки и отправки на пульт диспетчера.

Совместно с координатами производится запись ряда параметров транспортного средства (TC), состояний аналоговых и дискретных входов терминала, и цифровых интерфейсов.

Терминалы могут использоваться на любых видах ТС.

Рис. 12

Прием данных в ПО мониторинга

Подключение и настройка

(версия 7 от 31.05.2018)

## ПРИЛОЖЕНИЕ № 1

Инструкция по доработке ПО сервера мониторинга при работе с тахографом

#### Отображение текущего состояния тахографа

Данные передаются в приведенных в таблице тегах (порядок байтов – little-endian):

Название тега	Размер в байтах	Значащие биты	Описание
		0 – 2	Текущий вид деятельности водителя №1: 0 – отдых; 1 – готовность; 2 – работа; 3 – вождение; 6 – ошибка; 7 – не доступно.
CAN32BITRx	4	3 – 5	Текущий вид деятельности водителя №2: 0 – отдых; 1 – готовность; 2 – работа; 3 – вождение; 6 – ошибка; 7 – не доступно.
		12 – 13	Наличие карты водителя №1: 0 – карта водителя отсутствует; 1 – карта водителя присутствует.
		20 – 21	Наличие карты водителя №2: 0 – карта водителя отсутствует; 1 – карта водителя присутствует.
CAN16BITRx	2	0 – 15	Скорость автомобиля (значение разделить на 256), км/ч

Пример: в теге CAN32BITRх пришло значение 4098 (в двоичном виде 10000000010) – присутствует карта водителя № 1, его вид деятельности – работа, второй водитель отдыхает.

В теге CAN16BITRх пришло значение 7951 – скорость 31 км/ч (7951/256).

Выгрузка карты водителя

#### Подключение и настройка

#### (версия 7 от 31.05.2018)

Выгрузка карты инициируется сервером. Получая запросы с сервера, терминал считывает файл выгрузки карты водителя из тахографа и отправляет его на сервер. Операция может занимать достаточно продолжительное время.

- Сервер посылает команды терминалу в теге OxE1 (текст):
- о см. ниже «Команды сервера»;
- о терминал транслирует команды тахографу;
- Терминал посылает ответы серверу в тегах 0xE1 (текст), 0xEB (двоичные данные):
- о форматы ответа (текст) и двоичных данных см. ниже.

Описание протокола обмена терминал – сервер приведено в документе "Описание протокола Galileosky", доступен для скачивания по ссылке https://7gis.ru/podderzhka/dokumentacziya.html (Поддержка - Документация -Инструкции по подключению и настройке – Протокол Galileosky).

ВНИМАНИЕ! Выгрузка возможна только с одной вставленной карты водителя. Номер слота не важен. Если будет установлено две карты, то при чтении файла будет возвращена ошибка 03 – ошибка выгрузки файла.

#### Логика работы сервера

Сервер запрашивает часть файла выгрузки (рис. 16). Если тахограф вернул терминалу запрошенную часть файла, то терминал отсылает эти данные серверу без изменений, иначе возвращается ошибка 03 – ошибка выгрузки файла.

ВНИМАНИЕ! Формирование ответов любой из команд может занимать

продолжительное время

- Серверу необходимо ждать ответа в течении 7 минут;
- Если ответ не был получен, то необходимо повторить запрос.



Рис. 13

Алгоритм получения ddd-файла

#### Команды сервера

 Запрос формирования файла выгрузки карты водителя. Внимание, данная команда оставлена для совместимости протокола с другими тахографами. В ответ всегда будет возвращено 00 – команда завершена успешно. Двоичных данных в ответе не содержится.

TAHOPREPARE <slot_number>

2) Запрос подготовленного файла выгрузки по частям

TAHOFILE <chunk_number>

- Необходимо указать номер блока;
- о Размер блока равен *251* байт;
- о Размер файла *~27КБ;*

В ответе содержатся двоичные данные, если запрошенная часть файла выгрузки получена от тахографа;

Если производился запрос последней части файла выгрузки, то длина двоичных данных будет в диапазоне [0, 251] байтов.

 Запрос установки ключа авторизации. Внимание, данная команда оставлена для совместимости протокола с другими тахографами. В ответ всегда будет возвращено 00 – команда завершена успешно. Двоичных данных в ответе не содержится

TAHOKEY <auth_key>

Ответы терминала (тег 0xE1)

TAHO <answer_code>

Код ответа:

- 00 команда завершена успешно;
- о 01 терминал не авторизирован;
- о 02 карта не установлена или установлена карта неподходящего типа;
- 03 ошибка выгрузки файла;
- о 04-неверный параметр.